Abstract
Pt-based electrocatalysts are by far the most effective for the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR), but they still suffer from high cost and insufficient overall performance. Improving Pt utilization via alloying or by forming core@shell structures is important for enhancing Pt activity and overall electrocatalytic performance. Herein, we report a simple seed-mediated method for synthesizing a dodecahedral PtCu alloy atomic shell on Pd nanocrystals. Significantly, such a Pd@PtCu nanocomposite with unique core@alloy-shell structure achieves a 25-fold and 6-fold enhancement of mass activity for HER and ORR, respectively, compared with the commercial Pt/C catalyst in acid media. Moreover, the unique Pd@PtCu catalyst shows only 1.0 mV increase in overpotential at 10 mA cm–2 after 10 000 cycles for HER and almost no activity decay after 5 000 cycles for ORR, indicating the high endurance of Pd@PtCu in the electrochemical environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.