Abstract

Human choline acetyltransferase (ChAT) synthesizes the neurotransmitter acetylcholine (ACh) from choline and acetyl-CoA. A crystal structure of human ChAT has been a long-standing goal in the neuronal signalling field. Milligram quantities of pure ChAT can be purified [Kim et al. (2005), Protein Expr. Purif. 40, 107-117], but exhaustive crystallization efforts failed to produce any crystals suitable for high-resolution structural studies. To obtain high-quality crystals of human ChAT, a truncation was made in a large poorly conserved loop region and high-entropy side chains were removed from the surface of the protein. The resulting 'entropy-reduced' ChAT (MR = 68.1 kDa) crystallizes readily and reproducibly and the crystals diffract X-rays to approximately 2.2 A. The availability of these crystals will allow us to study the structure of human ChAT on its own as well as in complex with its substrates and inhibitor molecules, leading to a greater understanding of its catalytic mechanism and regulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.