Abstract
The poor time stability of surface-enhanced Raman scattering (SERS) substrates greatly limits their application potential. Although core-shell structures are commonly used to enhance stability, their complex preparation processes, high costs, and susceptibility under acidic or alkaline conditions result in serious disadvantages for practical applications. Here, we propose a new method of external oxygen barrier to improve spectral stability, in which SERS substrates are stored in an oxygen-free environment. Controlled experiments are carried out under air and vacuum. Raman spectrum intensity is measured 11 times within six months for each group. Using the attenuation formula, the Raman spectrum intensity decay results of each SERS substrate over time are obtained. The effectiveness of the external oxygen barrier method is demonstrated through curve fitting using the corresponding function. The substrate spectral attenuation rates of the vacuum group and the argon group within six months are <20%, proving the effectiveness of the external oxygen barrier method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.