Abstract
The potential-induced changes in thymine coordination on polycrystalline silver electrodes are studied by surface enhanced Raman spectroscopy (SERS) for potentials positive to the potential of zero charge up to the end of the double layer range. Two distinct sets of spectra could be obtained in the range of potentials studied. Both states correspond to chemisorbed phases of thymine on silver, where a distinct heteroatom is deemed responsible for the bond with the surface. At less positive potentials, one of the ring oxygen atoms is responsible for the chemical bond and the molecule assumes a tilted position. At more positive potentials, one of the ring nitrogen atoms, possibly deprotonated, establishes a new bond with the surface, aligning the molecule's axis closer to the surface normal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.