Abstract
In this work, we developed a precise approach to analyze local proton concentration at the solid/liquid interface of electrodes, i.e. “surface pH”, during electrochemical reactions. For this, surface enhanced Raman spectroscopy (SERS) was applied to analyze pH-dependent structural changes of the –COOH group of p-mercaptobenzoic acid (p-MBA) modified onto Au nanoparticles (NPs) on the substrate close to a working electrode. Measurements using this system identified deprotonation of –COOH of p-MBA. Since preliminary experiments and density functional theory calculations suggest that the pKa of p-MBA attached to Au NPs is close to that in bulk solution, the SERS results indicate pH increase due to proton consumption by the cathodic overpotential of the working electrode. As an example, we applied this system to surface pH monitoring in electrodeposition process of Ni in an acidic bath, which indicated the validity of our method for precise detection of pH changes at electrode interfaces in situ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.