Abstract

New drugs and illicit synthesized mixtures detection at crime scenes is a great challenge for detection method, which requires anti-interference and ultrasensitive methods to detect methamphetamine (METH) in seized street samples and biological fluids. Herein, we constructed a surface-enhanced Raman sensing method based on aligner mediated cleavage (AMC) of nucleic acid for quantitative detection of METH for the first time. This method we proposed relied on AMC to achieve programmable sequence-specific cleavage of METH aptamer linked by gold nanoparticles (METH aptamer-Au NPs), the cleavage product-Au NPs conjugates (cleavage aptamer-Au NPs) would hybridize with complementary DNA (cDNA)-Au NPs, resulting in the aggregation of the Au NPs and concomitant plasmonic coupling effect. Besides, due to the base number of METH aptamer-Au NPs was decreased, the interparticle distance of the Au NPs was shortened, which increased the electric field enhancement factor. Thus, under the irradiation of the laser, rhodamine 6G (R6G) adsorbed on Au NPs generated a strong Raman signal. The detection limit reached 7 pM, the linear range was from 10 pM to 10 nM, and this detection method also showed good anti-interference ability and reproducibility in serum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.