Abstract

BackgroundAntibiotic resistance stands as a critical medical concern, notably evident in commonly prescribed beta-lactam antibiotics. The imperative need for expeditious and precise early detection methods underscores their role in facilitating timely intervention, curbing the propagation of antibiotic resistance, and enhancing patient outcomes. ResultsThis study introduces the utilization of surface-enhanced Raman spectroscopy (SERS) in tandem with machine learning (ML) for the sensitive detection of characteristic gene fragments responsible for antibiotic resistance appearance and spreading. To make the detection procedure close to the real case, we used bacterial plasmids as starting biological objects, containing or not the characteristic gene fragment (up to 1:10 ratio), encoding beta-lactam antibiotics resistance. The plasmids were subjected to enzymatic digestion and without preliminary purification or isolation the created fragments were captured by functional SERS substrates. Based on subsequent SERS measurements, a database was created for the training and validation of ML. Method validation was performed using separately measured spectra, which did not overlap with the database used for ML training. To check the efficiency of recognising the target fragment, control experiments involved bacterial plasmids containing different resistance genes, the use of inappropriate enzymes, or the absence of plasmid. SignificanceSERS-ML allowed express detection of bacterial plasmids containing a characteristic gene fragment up to the 10−7 concentration of the initial plasmid, despite the complex composition of the biological sample, including the presence of interfering plasmids. Our approach offers a promising alternative to existing methods for monitoring antibiotic-resistant bacteria, characterized by its simplicity, low detection limit, and the potential for rapid and straightforward analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.