Abstract

The molecular geometry and vibrational frequencies of 4,4′-bipyridine (BPE) in the ground state were calculated using density functional theory (DFT) methods (B3LYP) with 6-31++G(d,p) basis set. The optimized geometric bond lengths and bond angles are obtained by DFT employing the hybrid of Beckes non-local three parameter exchange and correlation functional and Lee–Yang–Parr correlation functional. Fourier transform infrared (FT-IR), Fourier transform Raman (FT-Raman) and near-infrared surface-enhanced Raman scattering (NIR-SERS) spectra of BPE on the silver foil substrate have been recorded. All FT-IR, FT-Raman and NIR-SERS band were assigned on the basis of the B3LYP/6-31++G(d,p) method. The vibrational frequencies obtained by DFT(3LYP) are in good agreement with observed results. The NIR-SERS of BPE excited by 1064 nm laser line is little difference with that excited by visible laser line. This phenomenon is result to the increase of the contribution of CHEM enhancement effect. Surface selection rules derived from the electromagnetic enhancement model were employed to infer the orientations of BPE on the silver foil substrate surface. Some vibrational frequency which are sensitive to the planar or non-planar structure of BPE, and to the dihedral angle were concluded.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.