Abstract
The dissociative adsorption of amino acids on Pt and Au electrodes in 0.1 M NaOH solutions was studied by cyclic voltammetry and surface-enhanced Raman spectroscopy (SERS). The intermediate species has been determined as adsorbed cyanide, which is designated by a potential-dependent vibration band around 2110 cm-1 on both Pt and Au surfaces. The dissociation of glycine can be observed on Pt surface in a wide potential region to form cyanide, while the dissociation of serine and threonine occurs at relatively high potentials along with the oxidation of their functional groups. The onset potential of dissociation of amino acids on the Pt surface increases in the order glycine < threonine < serine. It has been revealed that the self-inhibition of amino acid oxidation is originated from the strongly adsorbed cyanide, which is oxidized at potentials above 0.2 V vs SCE. On gold surfaces, cyanide species can be formed only from anodic oxidation of amino acids. The present study reveals characteristic interaction...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.