Abstract

A sensitive surface enhanced Raman scattering (SERS) substrate with metallic nanogap array (MNGA) is fabricated by etching of an assembled polystyrene (PS) spheres array, followed by the coating of a metal film. The substrate is reproducible in fabrication and sensitive due to the nanogap coupling resonance (NGCR) enhancement. The NGCR is analyzed with the finite difference time domain (FDTD) method, and the relationship between the gap parameter and the field enhancement is obtained. Experimental measurements of R6G on demonstrate that the enhancement factor (EF) of the MNGA SERS substrate is increased by more than two fold compared with the control sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.