Abstract

Surface-enhanced Raman scattering (SERS) spectroscopy is a rapid and non-destructive optical detection method that has been applied in various applications. Recently, three-dimensional (3D) substrate-based silicon nanostructures have been widely used as SERS substrates due to their high detection sensitivity, repeatability, and reusability. This paper uses a simple and low-cost electroless etching deposition process to generate silver nanoparticle-decorated porous silicon (Ag-PS) substrates. We propose a contact deposition process to generate localized Ag-PS (LocAg-PS) for SERS analysis. Due to the hydrophilic LocAg-PS pad on the hydrophobic PS background, the sample droplets self-aligned to the predefined LocAg-PS pads and condensed into a higher local concentration for high sensitivity SERS detection without extensive search for the hot spot. The effects of critical fabrication parameters and SERS analysis on the LocAg-PS surface were evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.