Abstract

Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) surface integral equation method is applied for the first time to accurately estimate the surface-enhanced Raman scattering (SERS) enhancement factor distribution for arbitrary nanoparticles and nano-aggregates. It is the first time in literature that the distributions of SERS enhancement factors of nanoparticles of a large variety are reported. It is shown that not every SERS substrate exhibits a long-tail distribution as a dimer consisting of two spheres in close proximity. Generic methods are proposed to evaluate the performance of nanoparticles on SERS substrates. A cumulative distribution is proposed to examine the contributions of hot and warm spots around the nanoparticles. It is used to identify the importance of warm spots on a SERS substrate. A parameter q is proposed to describe the likelihood of a randomly positioned molecule that can be activated. This study provides guidance and insights for the optimization of SERS substrate fabrication techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.