Abstract

Uniform two-dimensional plasmonic nanoparticle (NP)-semiconductor composite films could retard the attenuation of electromagnetic evanescent wave and show intensive Raman activity for the multiplex monitoring of hazards in a practical food matrix. Here, an efficient Raman platform is developed by employing a plasmonic nanoparticle (NP)-persistent luminescence material (PLM) composite film. PLM show upconversion photoluminescence (UCPL) properties. The emitted photons are absorbed by plasmonic NPs, which further boost the surface plasmon resonance for the generation of high polarizability and induce strong electromagnetic strength for surface-enhanced Raman scattering (SERS) enhancement. A UCPL-assisted SERS-enhanced mechanism is proposed and verified. A plasmonic NP-PLM film with superior SERS activity and detection capability becomes an alternative candidate for the sensitive and multiple detection of illegal addition of dyes in a food matrix. The proposed UCPL-assisted SERS-enhanced mechanism provides promising future directions to this end to design a next-generation SERS-active plasmonic NP-PLM composite film for the specific detection in complex samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call