Abstract

In this study, we report a surface-enhanced Raman scattering (SERS)-active array film, which is based on regenerated cellulose hydrogels and gold nanorods (AuNRs), by combining a silicon rubber mask with a vacuum filtration method. This strategy enables the direct AuNR array formation on hydrogel surface with a precisely controlled number density. Moreover, the control of interparticle nanogap has been realized by the spatial deformation of hydrogels. A decrease in gaps between AuNRs deposited on hydrogels can result in SERS enhancement because 3D porous hydrogel structures turned into 2D closely packed hydrogel films during drying. In our experiments, SERS sensor arrays show excellent SERS activity to detect rhodamine 6 G and thiram down to 10 pM and 100 fM with competitive enhancement factors of 3.9 × 108 and 9.5 × 109, respectively. Importantly, the resultant SERS-active arrays with nine sensor units can efficiently detect nine different analytes on a single substrates at a time. Moreover, we demonstrate that physical bending has little effect on the SERS activity of flexible AuNR array hydrogel films, which indicates the high reproducibility of SERS measurement. This SERS array film has great potential to simultaneously detect multiple hazards for the practical application of SERS analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call