Abstract

Surface-enhanced Raman spectroscopy (SERS) has been used in Raman-based metabolomics to provide abundant molecular fingerprint information in situ with extremely high sensitivity, without damaging the sample. However, poor reproducibility, caused by the randomness of the adsorption sites, and the short-range effect of SERS have hindered the development of SERS in metabolomics, resulting in very few SERS reference databases for small-molecule metabolites. In this work, our previously proposed large laser spot-swift mapping SERS method was adopted for the measurement of 24 commercially available metabolite standards, to provide reproducible and reliable references for Raman-based metabolomics study. Among these 24 metabolites, 22 contained no Raman data in PubChem. Other than the SERS spectra data, we extracted and explained the molecular vibration information of these metabolites, and combined with the density functional theory (DFT) calculations, we provided a new possibility for the fast Raman recognition of small-molecule metabolites. Accordingly, a large laser spot-swift mapping SERS database of metabolites in human serum was initially established, which contained not only the original spectral data but also other detailed feature information regarding the Raman peaks. With continuous accumulation, this database could play a promising role in Raman-based metabolomics and other Raman-related research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.