Abstract
The present study reports the enhancement of electrochemical oxygen reduction activity of porous La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) cathodes by coating a thin film of Pr-Ni-Mn oxide (PNM5) using a multi-step infiltration process. XRD examination reveals that PNM5 mainly contains a multiphase mixture of Pr6O11, PrNiO3, MnO and NiO. SEM morphology shows a thin PNM5 film and small particles are formed on the surface of LSCF backbone particles. Impedance spectrum analysis indicates that PNM5 infiltrated LSCF exhibits dramatically reduced polarization resistance (Rp), reaching Rp of 0.244 Ω cm2 at 973 K, which is one-half of the baseline LSCF cathode. The activation energy of LSCF cathodes infiltrated with PNM5 is 1.45 eV, slightly lower than the baseline LSCF cathode (1.77 eV). Distribution of relaxation time (DRT) function analysis shows PNM5 infiltration layer significantly promotes the oxygen reduction reaction (ORR) of cathode surface. With the increase in firing temperature, the total resistance increases and Rp changes from ion transport to oxygen reduction reaction. Degradation rate of the PNM5-infiltrated LSCF is also lower, 0.02168% vs 0.07093% for the baseline LSCF over a 200-h period. A single cell testing indicated that the peak power density of the PNM5-infiltrated cell was increased by 140.66%. Overall, PNM5 could be a potential catalyst for boosting the performance of a commercial LSCF cathode for solid oxide fuel cells (SOFC).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.