Abstract
The fluorescence behavior of single CdSe(ZnS) core-shell nanocrystal (NC) quantum dots is dramatically affected by electromagnetic interactions with a rough metal film. Observed changes include a fivefold increase in the observed fluorescence intensity of single NCs, a striking reduction in their fluorescence blinking behavior, complete conversion of the emission polarization to linear, and single NC exciton lifetimes that are >10(3) times faster. The enhanced excited state decay process for NCs coupled to rough metal substrates effectively competes with the Auger relaxation process, allowing us to observe both charged and neutral exciton emission from these NC quantum dots.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.