Abstract
Covalent immobilization of collagen onto poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) film was achieved to improve its cell compatibility. Amide groups photografted on PHBV films were initially converted into amine groups through Hofmann degradation and collagen was then chemically bonded to amine groups, consequently forming the amide, amine, and collagen-modified PHBV. The structures of these modified PHBV films were confirmed by ATR-FTIR, XPS, and SEM analyses. Compared with that of PHBV film, surface wettability of the modified PHBV films enhanced remarkably. In particular, water contact angle of the collagen-modified PHBV film decreased from 65.0 degrees to 2.1 degrees within 130 s. Sheep chondrocytes cultured on PHBV and modified PHBV films were evaluated by cell adhesion test, MTT assay, and morphological observation under SEM. Results showed that the collagen-modified PHBV film had better cell adhesion and proliferation than other modified PHBV films and PHBV film. Chondrocytes on the collagen-modified PHBV film adhered through filopodia, spread by cytoplasmic webbing, and formed cells layer earlier than other modified ones, indicating that the collagen-modified PHBV is a promising biomaterial for cartilage tissue engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.