Abstract

Nanostructured materials are promising candidates for chemical sensors due to their fascinating physicochemical properties. Among various candidates, tin oxide (SnO2) has been widely explored in gas sensing elements due to its excellent chemical stability, low cost, ease of fabrication and remarkable reproducibility. We are presenting an overview on recent investigations on 1-dimensional (1D) SnO2 nanostructures for chemical sensing. In particular, we focus on the performance of devices based on surface engineered SnO2 nanostructures, and on aspects of morphology, size, and functionality. The synthesis and sensing mechanism of highly selective, sensitive and stable 1D nanostructures for use in chemical sensing are discussed first. This is followed by a discussion of the relationship between the surface properties of the SnO2 layer and the sensor performance from a thermodynamic point of view. Then, the opportunities and recent progress of chemical sensors fabricated from 1D SnO2 heterogeneous nanostructures are discussed. Finally, we summarize current challenges in terms of improving the performance of chemical (gas) sensors using such nanostructures and suggest potential applications. Contains 101 references.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.