Abstract

The large-scale application of oxygen evolution reaction electrocatalysts is limited by many challenges such as sluggish kinetics, low conductivity, and instability. Remarkably, Co3+ plays a vital role in oxygen evolution catalytic process because Co3+ ions are regarded as active sites. Developing catalysts with high Co3+ content is highly promising to improve the efficiency of water oxidation. In this study, we report a novel design method through controlling pH value and potential guided by Pourbaix diagram to synthesize surface Co3+-rich catalyst. The as-prepared catalyst possesses enhanced electrode-electrolyte contact area and lower diffusion resistance. In alkaline media, this catalyst exhibits promising oxygen evolution performance, with lower onset overpotential, satisfactory overpotential, and high value of turnover frequency (TOF).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.