Abstract

Triboelectric nanogenerator (TENG), originated from mechano-driven Maxwell’s displacement current, has shown great significance in harvesting low-frequency/high-entropy mechanical energy. To improve the electrical performances of TENG, surface engineering offers a facile and economical method by introducing electron donating/withdrawing groups. Here, we demonstrate a self-assembled monolayer (SAM)-assisted surface engineering strategy on AgNWs based transparent conductive film for TENG and self-powered pressure sensor. The SAM-assisted surface engineering provides an efficient means to tuning the surface potential and charge density of the friction layer by decorating different chemical functional groups. The chemical properties of decorated SAMs and their influence on TENG outputs are systematically investigated. The modified TENG exhibits an improved output performance (including open-circuit voltage of 300 V, short-circuit current of 23 μA, peak power of 1.24 mW, and power density of 1.4 W/m2), which can be readily used to drive commercial portable electronics. Furthermore, the modified TENG can be utilized as a self-powered pressure sensor with high sensitivity (221 V·kPa−1) and constructed into a pressure sensor array (4 × 4 pixels) for trajectory tracking. This work presents a universal method to tuning the electrical performance of TENGs and extends their potential applications toward low-power-consuming, highly sensitive, and multifunctional sensory devices and systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.