Abstract

The surface engineering of electrocatalysts is one of the promising strategies to increase the intrinsic activity of electrocatalysts. It generates anion/cation vacancy defects and increases the electrochemically active surface area. We describethe surface engineering of Ni2P to favorably tune the bifunctional oxygen electrocatalytic activity and the development of a rechargeable zinc-air battery (ZAB). Ni2P encapsulated with N and P-dual doped carbon (Ni2P@NPC) is synthesized using a single-source precursor complex tris-(2,2'-bipyridine)nickel(II) bis(hexafluorophosphate). The surface engineering of the as-synthesized Ni2P@NPC is achieved by the controlled acid treatment at room temperature. The surface engineering removes carbon debris and opens the pores, exfoliates the encapsulating carbon layer, increases the P-vacancy in the crystal lattice, and boosts the electrochemically active surface area. Thesurface-engineered catalyst exhibits enhanced bifunctional activity towards oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The electrocatalytically active sites of engineered catalysts are highly accessible for facilitated electron transfer kinetics. P-vacancy favors the facile formation of defect-rich OER active metal oxyhydroxide species. The rechargeable ZAB based on the engineered catalyst delivers a specific capacity of 770.25 mA h gZn-1, energy density of 692 Wh kgZn-1, and excellent charge-discharge cycling performance with negligible voltaic efficiency loss (0.6 %) after 100 h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.