Abstract

Surface energy and surface chemical bonds of the plasma treated Si incorporated diamond-like carbon films (Si-DLC) were investigated. The Si-DLC films were prepared by r.f. plasma assisted chemical vapor deposition using benzene and diluted silane (SiH 4/H 2 = 10:90) as the precursor gases. The Si-DLC films were subjected to plasma treatment using various gases like N 2, O 2, H 2 and CF 4. The plasma treated Si-DLC films showed a wide range of water contact angles from 13.4° to 92.1°. The surface energies of the plasma treated Si-DLC films revealed a high polar component for O 2 plasma treated Si-DLC films and a low polar component for CF 4 plasma treated Si-DLC films. The CF 4 plasma treated Si-DLC films indicated the minimum surface energy. X-ray photoelectron spectroscopy (XPS) revealed that the polarizability of the bonds present on the surface explains the hydrophilicity and hydrophobicity of the plasma treated Si-DLC films. We also suggest that the O 2 plasma treated surface can provide an excellent hemocompatible surface from the estimated interfacial energy between the plasma treated Si-DLC surface and human blood.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.