Abstract

Intelligent materials such as magnetoelectrothermoelastic (METE) nanoplates offer great potential to supply more efficient energy harvesting devices, transducers, sensors, and actuators. In this study, the influences of slanted angle of the METE nanoplate and orthotropic angle of Pasternak foundation on the magnitude of surface energy layers are investigated through a vibrational analysis. The nanoplate is exposed to outer thermal, electric, magnetic and in-plane loadings. For modeling the plate’s nonlocal behavior and surface stresses, the governing equations are constructed based on Hamilton’s principle. Galerkin method is implemented to solve the equilibrium motions, and also for the authenticity of the solution, the equations are resolved by the Navier’s method. Obtained results are deemed useful for the mechanical analysis and design of nano-/microelectromechanical system nanostructures constructed from the METE materials. The numerical examples indicated that after a particular value of slanted angle of the nanoplate, α ≥ 80, the magnitude of surface energy layers in the vibration behavior becomes opposite to the case when the slanted angles are 0° < α < 80°. In addition, the value of the slanted angle of the nanoplate can cause the harmonic responses of the vibration due to the orthotropic angle of Pasternak foundation to shift in harmony with the slanted angle degree.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.