Abstract

A route to achieving high yields of monodisperse, deeply deoxidized graphene oxide (GO) in solution is presented. It overcomes many of the problems of dispersibility and inefficient reduction of GO in solvothermal deoxidation that are usually observed, despite the previous use of strong reducing agents (e.g. Fe2+, S or hydrazine). It is shown that the incomplete deoxidation is most likely due to agglomeration/self‐assembly of partially reduced GO, which also creates poor dispersibility. GO deoxidation is found to be highly sensitive to the solvent surface energy and, through experiments and empirical calculations, tuning the solvent surface energy to around 85.6 mJ/m2 (at 100 °C) leads to fully deoxidized GO. These calculations also allow appropriate solvent surface energies to be calculated for other temperatures for deep deoxidation of GO. This approach makes solvothermal deoxidation of GO a potential route to large scale, economic production of highly disperse monolayered graphene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.