Abstract

Spontaneous Sn whisker growth, as a reliability issue in electronic assemblies, has drawn much attention in the past several decades. However, the underlying mechanism is still ambiguous. Herein, the growth of Sn whiskers on pure Sn with different specific surface areas was studied to elucidate the effect of surface energy on Sn whisker growth. Though fabricated and cultivated using the same parameters, it was found that Sn whiskers were obtained on the sample of nano-Sn, which possesses excess surface energy, while no whiskers were observed on the sample of micro-Sn, indicating that surface energy plays a significant role in Sn whisker growth. In addition, the whiskering phenomenon is confirmed to be an abnormal recrystallization process according to the microstructure of the whisker root. Therefore, a Sn whisker growth mechanism companied with an abnormal recrystallization process is proposed, which is driven by the excess surface energy. This work provides a new perspective on understanding the long-standing Sn whiskering problem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call