Abstract

The Lifshitz−van der Waals, acid−base, and total surface free energies of various wood species were calculated from contact angle measurements. For spruce (Picea abies) and meranti (Shorea spp.) the following three methods were compared: capillary rise in wood powder columns (based on the Washburn equation), dynamic contact angle measurements (according to the Wilhelmy-plate principle), and sessile drop measurements along and across the grain of the wood. The capillary rise method was limited to nonswelling solvents, which means that only the Lifshitz−van der Waals component could be measured. With the dynamic contact angle measurement, the wettability during the first immersion was decreased compared to that of the sessile drop. This was probably due to reduced capillary penetration, but with the second immersion the presence of an adsorbed solvent layer increased the wettability and hence affected the surface energy data. The sessile drop measurements were highly dependent on the direction of measureme...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.