Abstract

The need for optimisation of DPI formulations is a main research motivation in respiratory drug delivery. Well-established formulations like carrier-based blends still show a lack of efficiency. The addition of extrinsic fine excipients is extensively discussed since decades, supported by a wide range of solid-state characteristics to understand their mechanism and classify influencing parameters. The first part of this study aims at comparing the surface energies of lactose fines and their corresponding influence on the aerodynamic performance of the respective ternary blends. Five different fine lactose qualities with varying origins were used, which were distinguishable in terms of surface energy, but comparable regarding particle size, moisture content and chemical composition. It demonstrates the crucial influence of adhesion properties of fines, based on different surface energies. Secondly, one specific fine lactose quality was used on fundamentally different lactose carriers, which highlights the negligible influence of carrier properties if extrinsic fines are preferentially capable of excipient-drug interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.