Abstract
A surface energy balance model based on the Shuttleworth and Wallace (Q J R Meteorol Soc 111:839–855, 1985) and Choudhury and Monteith (Q J R Meteorol Soc 114:373–398, 1988) methods was developed to estimate evaporation from soil and crop residue, and transpiration from crop canopies. The model describes the energy balance and flux resistances for vegetated and residue-covered surfaces. The model estimates latent, sensible and soil heat fluxes to provide a method to partition evapotranspiration (ET) into soil/residue evaporation and plant transpiration. This facilitates estimates of the effect of residue on ET and consequently on water balance studies, and allows for simulation of ET during periods of crop dormancy. ET estimated with the model agreed favorably with eddy covariance flux measurements from an irrigated maize field and accurately simulated diurnal variations and hourly amounts of ET during periods with a range of crop canopy covers. For hourly estimations, the root mean square error was 41.4 W m−2, the mean absolute error was 29.9 W m−2, the Nash–Sutcliffe coefficient was 0.92 and the index of agreement was 0.97.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.