Abstract

The Institute for Marine and Atmospheric Research Utrecht (IMAU) participated in the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE III) in May 1998. In this paper we describe surface layer measurements performed on the sea ice at the Surface Heat and Energy Balance of the Arctic Ocean (SHEBA) camp and compare these with measurements collected above a grass‐covered surface in Cabauw, the Netherlands. The observations consist of both high‐frequency turbulence measurements and mean‐profile measurements of wind, temperature, and humidity. In addition, we measured the upward and downward components of both the longwave and the shortwave radiation, and the snow and ice temperatures in the upper 40 cm. The observations give a detailed picture of all components of the energy balance of the Arctic sea‐ice surface. The turbulence measurements are used to study the surface layer scaling of the turbulence variables in the stable boundary layer. More specifically, we showed that the integral length scale of the vertical velocity fluctuations serves as the relevant turbulence length scale. The monthly averaged energy balance of the Arctic sea‐ice was dominated by radiative fluxes, whereas the sensible and latent heat flux and the energy flux into the surface were rather small. A detailed inspection of the diurnal variations in the turbulent fluxes, however, indicates that although the monthly averaged values are small, the hourly averaged values for these fluxes are significant in the surface energy balance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.