Abstract

The energy balance at the glacier-atmosphere interface is the key control of the interaction between glaciers and climate. Melting at the glacier surface is controlled by the surface energy balance. Here we report, the energy and mass balance study carried out on Chorabari Glacier, Mandakini basin, Central Himalaya for the period of one year (Nov 2011-Oct 2012). The meteorological data collected from an Automatic Weather Station (AWS) were used to compute the annual cycle of local surface energy balance in the ablation zone. The average energy flux is calculated 28.5 Wm-2 for surface melting. In addition, the net radiation component is the largest contributor (52%) to the total surface energy heat flux followed by turbulent sensible (26%) and latent (9%) fluxes and the remaining 13% is only from subsurface heat. The study shows that the modelled ablation is well matched with ground measurement by 2% relative error.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call