Abstract

Single-mode surface-emitting distributed feedback terahertz quantum-cascade lasers operating around 2.9 THz are developed in metal-metal waveguides. A combination of techniques including precise control of phase of reflection at the facets, and use of metal on the sidewalls to eliminate higher-order lateral modes allow robust single-mode operation over a range of approximately 0.35 THz. Single-lobed far-field radiation pattern is obtained using a pi phase-shift in center of the second-order Bragg grating. A grating device operating at 2.93 THz lased up to 149 K in pulsed mode and a temperature tuning of 19.7 GHz was observed from 5 K to 147 K. The same device lased up to 78 K in continuous-wave (cw) mode emitting more than 6 mW of cw power at 5 K. In general, maximum temperature of pulsed operation for grating devices was within a few Kelvin of that of multi-mode Fabry-Perot ridge lasers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.