Abstract

Maximizing the activity of materials towards the alkaline hydrogen evolution reaction while maintaining their structural stability under realistic working conditions remains an area of active research. Herein, we report the first controllable surface modification of graphene(G)/V8 C7 heterostructures by nitrogen. Because the introduced N atoms couple electronically with V atoms, the V sites can reduce the energy barrier for water adsorption and dissociation. Investigation of the multi-regional synergistic catalysis on N-modified G/V8 C7 by experimental observations and density-functional-theory calculations reveals that the increase of electron density on the epitaxial graphene enable it to become favorable for H* adsorption and the subsequent reaction with another H2 O molecule. This work extends the range of surface-engineering approaches to optimize the intrinsic properties of materials and could be generalized to the surface modification of other transition-metal carbides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.