Abstract

Electrochemical process of epicatechin, one of the flavonoids antioxidants, was studied here by cyclic voltammetry and semiempirical molecular orbital computation (MOPAC). Electrochemical oxidation of epicatechin showed a multistep mechanism with two anodic peaks being recognized at about +0.14V and +0.52V (vs. Ag/AgCl). The first peak is strong concentration dependent, showing an adsorptive feature between 1×10−8M and 2×10−7M, a diffusion controlled feature between 2×10−7M and 1×10−5M, and a surface polymerization feature between 1×10−5M and 1×10−3M. Computation showed that the first electron was released at 4′-hydroxyl group in B-ring. No charge delocalization occurs between A- and B-rings. Higher pH medium favors oxidation. The oxidation rate is faster in strong acidic or basic medium and slower in a weak acidic medium. This research may help to explain the complexity of antioxidant activity of flavonoids and as a complement method to characterize the role of flavonoids antioxidants in treating oxidative stress diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.