Abstract

The ability of polymers to acquire and retain electrostatic charges is valued in designing new equipment like electrostatic separators, electret filters, and powder coating devices. Several recent studies have pointed out the beneficial effect of electric charges on the lubricated contacts. The aim of this paper is to compare two physical mechanisms of electric charging of polymers: 1) triboelectric effect; and 2) corona discharge. The experiments are performed with 5-mm-thick samples of Acrylonitrile-butadiene-styrene, poly-vinyl-chloride, and polypropylene. The cartography of the electric potential is made using the induction probe of an electrostatic voltmeter. The tribocharging is done by back and forth movement of two polymer plates in conformal contact with each other (speed: 7 to 30 mm/s; constant normal force: 10 N). Uniform corona charging is performed by moving the sample in the space charge zone generated by a wire-type high-voltage electrode used in a triode configuration with the potential of the grid electrode set at 1 and 2 kV. The electric potential at the surface of tribocharged polymers is less uniform, but decays slower than that of corona-charged samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.