Abstract

In this article, a new explicit formula is presented for the length-dependent persistence length of microtubules with consideration of surface effects. Further, surface effects on the buckling characteristics of microtubule systems in viscoelastic surrounding cytoplasm are investigated using a modified Timoshenko beam model. Closed-form solutions are presented for the buckling growth rates of double-microtubule systems. Both normal and shearing behaviors of microtubule associated proteins are taken into consideration. The comparison of present results with the available experimental data in the open literature shows that the present formulation provides more accurate results than those obtained by the classical beam theory. It is observed that the surface effect plays a prominent role in the bending and buckling behaviors of microtubules. Further, surface effects are more significant at higher buckling modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.