Abstract

Nanoporous materials and structures have attracted widespread attention due to their excellent mechanical properties. Based on the surface elasticity, the effective Young’s moduli are derived for four typical nanoporous structures with periodic unit cells. When the cross-sectional size reduces to nanoscale, the effective Young’s modulus is revealed to be strongly size-dependent. Both the effects of residual surface stress and effective-surface Young’s modulus are examined. The results indicate that negative effective Young’s modulus can be achieved when the residual surface stress is less than zero. The influences of the cross-sectional shape on the relationship between the overall deformation and applied loads are examined. The relative density also plays an important role to the mechanical characteristics not only at macroscales, but also at nanoscales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.