Abstract

Diverse processes that include energy conversion, wettability, lubrication, adhesion, and surface-directed phase separation in mixtures fundamentally depend on the structure and dynamics of materials' surfaces and interfaces. We report an unusual phenomenon wherein the surface viscosity of polymer nanocomposites of polystyrene (PS), polyvinyl methyl ether (PVME), and PS-coated gold nanoparticles (PS/PVME/PS-Au) is over an order of magnitude smaller than that of the neat miscible PS/PVME blend. Our X-ray photon correlation spectroscopy studies of the surface dynamics also reveal that the polymer chains manifest dynamics associated with two separate average compositional environments: a PVME-rich region, significantly in excess of its bulk concentration, and a separate PS-rich environment, where the dynamics are approximately 2 orders of magnitude slower. The unusually rapid surface dynamics in the PS/PVME/PS-Au nanocomposite are due largely to the excess PVME chains and the polymer/brush-coated nanoparticle interactions at the free surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.