Abstract

Recent advances in engineered material technologies (e.g., photonic crystals, metamaterials, plasmonics, etc.) provide valuable tools to control Cherenkov radiation. In all these approaches, however, the particle velocity is a key parameter to affect Cherenkov radiation in the designed material, while the influence of the particle trajectory is generally negligible. Here, we report on surface Dyakonov–Cherenkov radiation, i.e. the emission of directional Dyakonov surface waves from a swift charged particle moving atop a birefringent crystal. This new type of Cherenkov radiation is highly susceptible to both the particle velocity and trajectory, e.g. we observe a sharp radiation enhancement when the particle trajectory falls in the vicinity of a particular direction. Moreover, close to the Cherenkov threshold, such a radiation enhancement can be orders of magnitude higher than that obtained in traditional Cherenkov detectors. These distinct properties allow us to determine simultaneously the magnitude and direction of particle velocities on a compact platform. The surface Dyakonov–Cherenkov radiation studied in this work not only adds a new degree of freedom for particle identification, but also provides an all-dielectric route to construct compact Cherenkov detectors with enhanced sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.