Abstract

Though the intercalation mechanism of hard carbon anodes for Na-ion batteries (NIBs) gain decent electrochemical performances, the sluggish diffusion kinetics of Na-ions at low potential present huge challenge to high power applications. To improve the rate capability and cycling stability, especially the performance at high rates, herein, a novel N, S co-doping strategy based on the pseudocapacitive mechanism is developed via one-step synthesis, which endows the hard carbon with excellent rate performances and long-term cycling stability. Moreover, the electrochemical behaviors of N, S co-doping carbon materials outperform those of single heteroatom (N) doping materials, owing to the additional effective covalent S bonds and more defects. The optimized NSC2 (derived from 2:1 mass ratio of thiourea and sodium citric) delivers a high reversible capacity of 280 ​mAh g−1 at 0.05 ​A ​g−1 for 200 cycles and 223 ​mAh g−1 at 1 ​A ​g−1 for 2000 cycles, respectively, and preserves 102 ​mAh g−1 at 10 ​A ​g−1. This work provides a universal co-doping approach on modification of hard carbon materials for high power battery applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call