Abstract

The surface diffusion coefficient for hydrogen on Ni(100) at low coverage has been measured between 223 and 283 K. A pulsed laser is used to desorb hydrogen from a small, well defined, region on the surface without perturbing the ambient surface temperature. Hydrogen from nearby regions on the surface migrates into the vacant area and the time required to refill that area is determined by subsequent laser-induced-desorption measurements. The diffusion coefficient is obtained using an equation derived from Fick's Second law with non-stationary boundary conditions. The temperature dependence of the diffusion coefficients yields a value of 4.0 ± 0.5 kcal/mol for the energy barrier to diffusion. A value of roughly 3 × 10 13 s −1 for the site-to-site hopping frequency is derived when the pre-exponential for diffusion is fit to a random-walk mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.