Abstract

We have investigated the surface kinetics during metalorganic vapor-phase epitaxy (MOVPE), using high-vacuum scanning tunneling microscopy (STM) observation of two-dimensional (2D) nuclei and denuded zones. Using Monte Carlo simulations based on the solid-on-solid model, from 2D nucleus densities we estimated the surface diffusion coefficients of GaAs and AlAs to be 2 × 10−6 and 1.5 × 10−7 cm2/s at 530°C, and the energy barriers for migration to be 0.62 and 0.8 eV, respectively. The 2D nucleus size in the [110] direction was about two times larger than that in the [1̄10] direction. The size anisotropy is caused primarily by a difference in the lateral sticking probability (Ps) between steps along the [1̄10] direction (A steps) and steps along the [110] direction (B steps). The Ps ratio was estimated to be more than 3:1. Denuded zone widths on upper terraces were 2 ± 0.5 times wider than those on lower terraces. This showed that Ps at descending steps was 10 to 3 × 102 times larger than Ps at ascending steps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.