Abstract

This research has developed a process for producing ZnO thin film from DEZn deposited onto a PET substrate with low-pressure, high-frequency Ar + O2 plasma using a chemical vapor deposition technique. The aim is to study the film production conditions that affect electrical properties, optical properties, and thin film surfaces. This work highlights the use of plasma energy produced from a mixture of gases between Ar + O2. Plasma production is stimulated by an RF power supply to deliver high chemical energy and push ZnO atoms from the cathode inside the reactor onto the substrate through surface chemical reactions. The results showed that increasing the RF power in plasma production affected the chemical reactions on the substrate surface of film formations. Film preparation at an RF power of 300 W will result in the thickest films. The film has a continuous columnar formation, and the surface has a granular structure. This results in the lowest electrical resistivity of 1.8 × 10-4 Ω. In addition, when fabricated into a DSSC device, the device tested the PCE value and showed the highest value at 5.68%. The reason is due to the very rough surface nature of the ZnO film, which increases the scattering and storage of sunlight, making cells more efficient. Therefore, the benefit of this research is that it will be a highly efficient prototype of thin film production technology using a chemical process that reduces production costs and can be used in the industrial development of solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.