Abstract

Starting from Jaeger’s classical formula for the field of temperature rise during dry surface grinding, an analytical expression for the profile of the heat flux going to the workpiece is derived. This analytical approach, termed the surface derivative method, can be applied very easily to inverse thermal analysis in surface grinding, and is compared herein with other inverse analysis methods reported in literature, viz. the temperature matching method and the Gauss–Newton method. In contrast to these methods, the surface derivative method is much less computationally expensive and does not collapse for high Peclet number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.