Abstract

The objective of this study was to investigate the effect of nanoparticle dispersion on surface morphological changes and degradation process in polymeric coatings during exposure to ultraviolet (UV) radiation. Three types of nano-titanium dioxide (nano-TiO2) were selected and dispersed into acrylic urethane (AU) coating to generate degrees of nanoparticle dispersion states. Two accelerated exposure conditions: wet (30 °C and 75% relative humidity (RH)) and dry (30 °C and 0% RH), were selected. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) was used to monitor surface chemical degradation. Laser scanning confocal microscopy (LSCM) was used to characterize nanoparticle dispersion and surface/subsurface morphological changes in the AU coatings during UV exposure. For a given nanoparticle, similar surface morphological changes of the coatings indicated the similar degradation processes under the wet and dry conditions, but the degradation was faster under the wet condition. Surface morphological changes were closely related to the nanoparticle dispersion in three coatings, and the heterogeneity in nanoparticle dispersion significantly affects the degradation process and dominates the degradation patterns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call