Abstract

The reliability of electrical connectors is essential for modern electrical on-board systems in cars, especially for automated driving vehicles. Electrical connectors in cars are stressed by harsh automotive application conditions such as vibrations and thermal loadings. These factors may induce fretting corrosion which influence the lifetime of electrical systems. Multivariable lifetime tests are useful tools to validate the performance of electrical systems under mechanical and thermal loadings. This study investigated the failure mode and surface degradation of electrical connectors stressed by accelerated multivariable lifetime tests. In order to gain a better understanding with the failed and non-failed surfaces of stressed electrical connectors, such connectors are analyzed by using various methods. The surfaces were characterized by tools like 3D-Topography-Measurements, Light-Microscopy, Scanning-Electron-Micro-scope and Electron-Microanalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.