Abstract

Many computer vision algorithms have been presented to track surface deformations, but few have provided a direct comparison of measurements with other stereoscopic approaches and physics-based models. We have previously developed a phase-based cross-correlation algorithm to track dense distributions of displacements over three-dimensional surfaces. In the present work, we compare this algorithm with one that uses an independent tracking system, derived from an array of fluorescent microspheres. A smooth bicubic Hermite mesh was fitted to deformations obtained from the phase-based cross-correlation data. This mesh was then used to estimate the microsphere locations, which were compared to stereo reconstructions of the microsphere positions. The method was applied to a 35mm × 35mm × 35mm soft silicone gel cube under indentation, with three square bands of microspheres placed around the indenter tip. At an indentation depth of 4.5mm, the root-mean-square (RMS) differences between the reconstructed positions of the microspheres and their identified positions for the inner, middle, and outer bands were 60µm, 20µm, and 19µm, respectively. The usefulness of the strain-tracking data for physics-based finite element modelling of large deformation mechanics was then demonstrated by estimating a neo-Hookean stiffness parameter for the gel. At the optimal constitutive parameter estimate, the RMS difference between the measured microsphere positions and their finite element model-predicted locations was 143µm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.