Abstract

The 22 August 1902 Mw 7.7 Atushi earthquake is the most disastrous seismic event in the southwestern Tian Shan. However, the spatial distribution of surface rupture zones as well as the geometric feature of surface deformation remain unclear, and the seismogenic fault is still controversial. Based on geologic and geomorphic interpretations of multiple remote sensing imaging data, high-resolution DEM data derived from UAV imaging complemented by field investigations, we mapped two sub-parallel NEE-trending surface rupture zones with a total length of 108 km. In addition, ~60 km and ~48 km surface rupture zones are distributed along the pre-existing Atushi fault (ATF) and the Keketamu fault (KTF), respectively. The surface deformations are mainly characterized as bedrock scarp, hanging wall collapse scarp, pressure ridge, and thrust-related fold scarps along the two south-dipping thrust faults, which are defined as the seismogenic structure of the 1902 Mw 7.7 Atushi earthquake. Thus, we proposed the cascading-rupture model to explain the multiple rupture zones generated by the 1902 Mw 7.7 Atushi earthquake. Moreover, the multiple advanced remote sensing mapping techniques can provide a promising approach to recover the geometric and geomorphic features of the surface deformation caused by large seismic events in the arid and semi-arid regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call