Abstract

Computer vision builds a connection between image processing and industrials, bringing modern perception to the automated manufacture of magnetic tiles. In this article, we propose a real-time model called MCuePush U-Net, specifically designed for saliency detection of surface defect. Our model consists of three main components: MCue, U-Net and Push network. MCue generates three-channel resized inputs, including one MCue saliency image and two raw images; U-Net learns the most informative regions, and essentially it is a deep hierarchical structured convolutional network; Push network defines the specific location of predicted surface defects with bounding boxes, constructed by two fully connected layers and one output layer. We show that the model exceeds the state of the art in saliency detection of magnetic tiles, in which it both effectively and explicitly maps multiple surface defects from low-contrast images. The proposed model significantly reduces time cost of machinery from 0.5 s per image to 0.07 s and enhances detection accuracy for image-based defect examinations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.