Abstract

Carrots are a type of vegetable with high nutrition. Before entering the market, the surface defect detection and sorting of carrots can greatly improve food safety and quality. To detect defects on the surfaces of carrots during combine harvest stage, this study proposed an improved knowledge distillation network structure that took yolo-v5s as the teacher network and a lightweight network that replaced the backbone network with mobilenetv2 and completed channel pruning as a student network (mobile-slimv5s). To make the improved student network adapt to the image blur caused by the vibration of the carrot combine harvester, we put the ordinary dataset Dataset (T) and dataset Dataset (S), which contains motion blurring treatment, into the teacher network and the improved lightweight network, respectively, for learning. By connecting multi-stage features of the teacher network, knowledge distillation was carried out, and different weight values were set for each feature to realize that the multi-stage features of the teacher network guide the single-layer output of the student network. Finally, the optimal lightweight network mobile-slimv5s was established, with a network model size of 5.37 MB. The experimental results show that when the learning rate is set to 0.0001, the batch size is set to 64, and the dropout is set to 0.65, the model accuracy of mobile-slimv5s is 90.7%, which is significantly higher than other algorithms. It can synchronously realize carrot harvesting and surface defect detection. This study laid a theoretical foundation for applying knowledge distillation structures to the simultaneous operations of crop combine harvesting and surface defect detection in a field environment. This study effectively improves the accuracy of crop sorting in the field and contributes to the development of smart agriculture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.